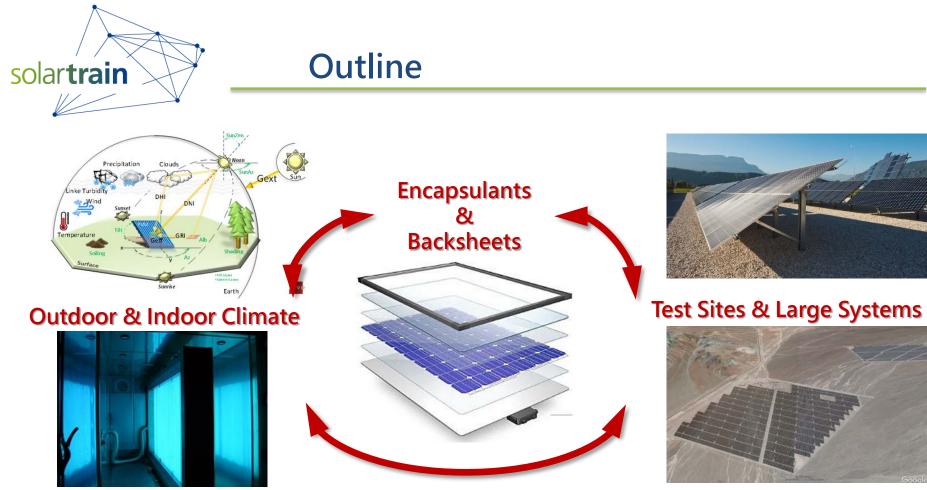

SOLAR-Train: Climate, Materials and Performance

PV Reliability SOPHIA Workshop 2020 Webinar 29.05.2020

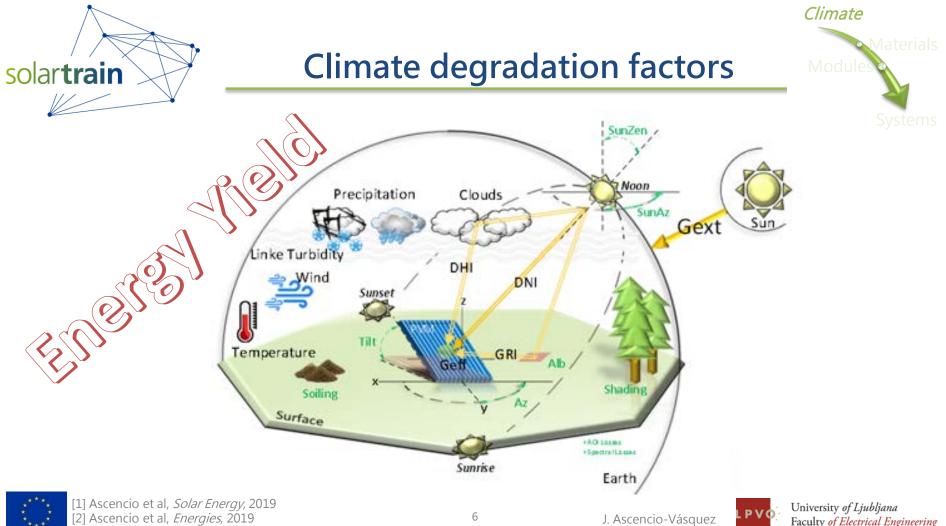

This project has received funding from the European Union's Horizon 2020 programme under GA. No. 721452.

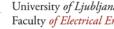
- "Understanding climate related operation conditions of PV systems"
 - J. A-V: Main climate degradation factors
 - N.K.: Equilibrium moisture content in PV polymers
 - S.M.: Moisture diffusion in different encapsulants and backsheets
- "Advanced characterization of PV materials: natural and artificial ageing"
 - C.B.: DH/UV of different encapsulants
 - L.C.: Accelerating testing of backsheets
 - Dj.M.: Effect of different backsheet on encapsulant degradation
- "Understanding PV module performance evolution, Service Lifetime Prediction & O&M activities "
 - I.K.: PV degradation modelling
 - S.L.: Nonlinear Multi-step Performance Loss Rate
 - N.H.: Electrical parameter evolution
 - G.O.: Modelling applied to O&M activities

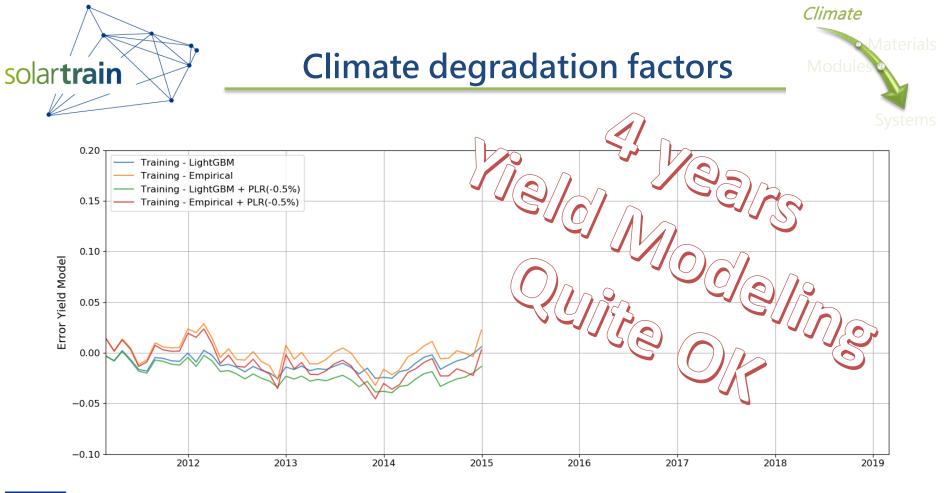
Modules

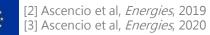
Materials

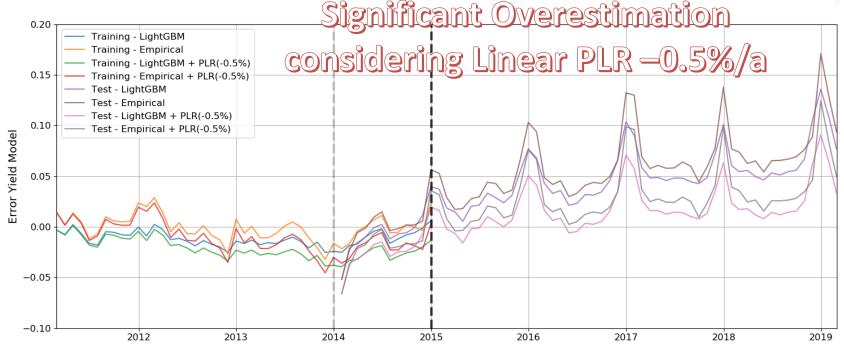
Systems


Climate related conditions

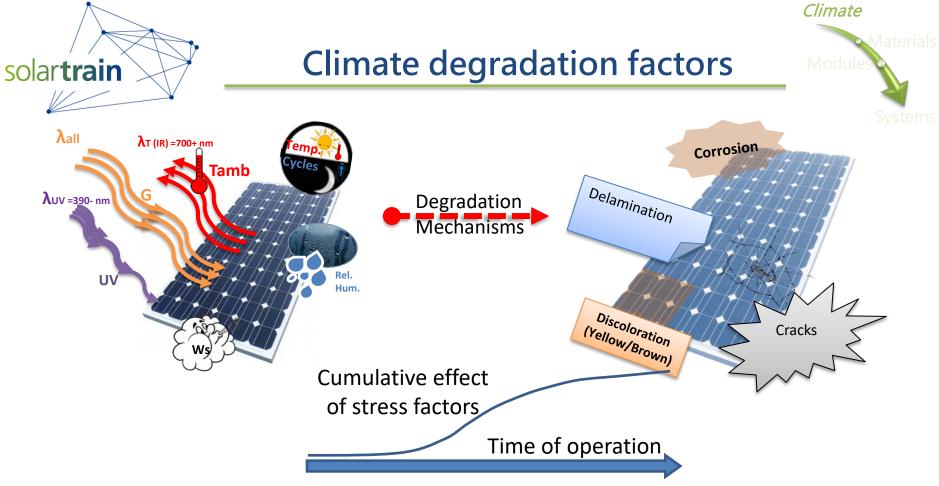



- "Understanding climate related operation conditions of PV systems"
 - J. A-V: *Main climate degradation factors*
 - N.K.: Equilibrium moisture content in PV polymers
 - S.M.: Moisture diffusion in different encapsulants and backsheets
- "Advanced characterization of PV materials: natural and artificial ageing"
 - C.B.: DH/UV of different encapsulants
 - L.C.: Accelerating testing of backsheets
 - Dj.M.: Effect of different backsheet on encapsulant degradation
- "Understanding PV module performance evolution, Service Lifetime Prediction & O&M activities "
 - I.K.: PV degradation modelling
 - S.L.: Nonlinear Multi-step Performance Loss Rate
 - N.H.: Electrical parameter evolution
 - G.O.: Modelling applied to O&M activities



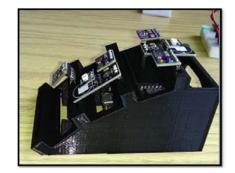


Climate degradation factors

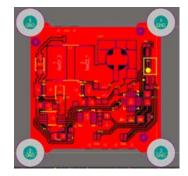


[2] Ascencio et al, *Energies*, 2019 [3] Ascencio et al, *Energies*, 2020

University of Ljubljana Faculty of Electrical Engineering



UV dose in different climates


	KGPV zones [2]	Surface's Tilt angle	Altitude (m)	Global Irradiation (kWh/m²/a)	UV irradiation (kWh/m²/a)	UV/G (%)	UV/G Winter-Summer
FRBG	DM (Temperate)	45°	265	1372.93	60.01	4.37%	2.6 – 5.1 %
UFS	DM (Alpine)	45°	2650	1702.13	81.68	4.81%	2.9 – 5.8 %
GC	CH (Steppe)	22.5°	5	2273.68	100.47	4.42%	3.7 – 5.1 %
NEG	BK (Desert)	31°	300	2401.04	95.08	3.96%	3.4 – 4.4 %

Outdoor Measurements

Indoor Light Source

[2] Ascencio et al, *Energies*, 2019

Climate


Materials

Equilibrium moisture content in PV polymers

Is Henry law valid for real polymers?

Climate

Equilibrium moisture content in PV polymers

Is Henry law valid for real polymers?

• Henry law:

$$c_{polymer} = K_H \cdot RH_{environment}$$

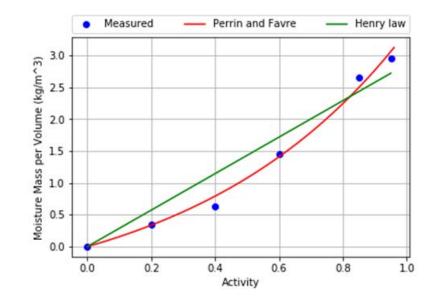
- Valid for ideal, hydrophobic and non-porous materials
- Assumes only polymer-polymer interactions

• ENSIC model of Perrin and Favre:

$$c_{polymer} = \frac{e^{(k_s - k_p)RH_{env}} - 1}{(k_s - k_p)/k_p}$$

- Valid for less hydrophobic, macroporous/non-porous materials
- Assumes penetrant-penetrant and polymer-penetrant interactions
- Describes adequately the absorption isotherm of Polyvinyl Butyral encapsulant [1].

Equilibrium moisture content in PV polymers

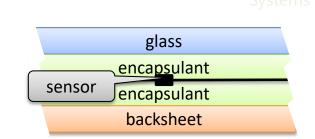

Is Henry law valid for real polymers?

• Procedure

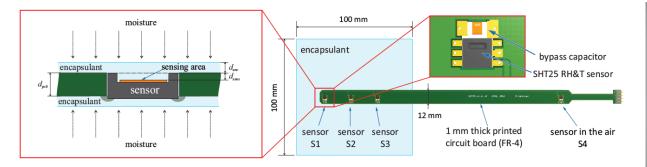
Karl-Fischer Titration applied on PET+Al / 2xEVA stacks loaded into environmental chamber at 85 °C and different RH levels.

• Fitting: R² values

	Perrin and Favre	Henry's law
R ² Value	0.992	0.937



Moisture diffusion

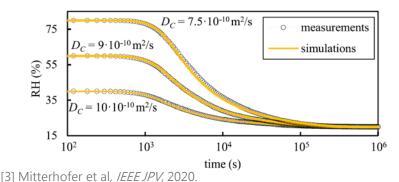

Measurements

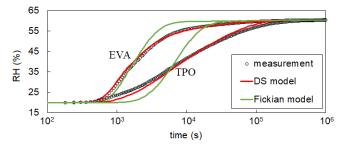
• Deviations from equilibrium state: diffusion $\frac{\partial C}{\partial t} = D \cdot \Delta C$

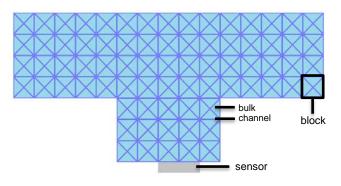
Climate

• Measurement with encapsulated miniature moisture sensors

University of Ljubljana Faculty of Electrical Engineering




Moisture diffusion



- FEM simulations Fickian model
 - Reasonably accurate in some encapsulants and backsheets (e.g. EVA, PET)
 - Inaccurate in others (e.g. TPO)
- Inhomogeneous mesh: 2 transport mechanisms
- Hysteresis:
 - Ingress independent of C
 - Egress slower at high C

[4] Mitterhofer et al, EUPVSEC, 2019.

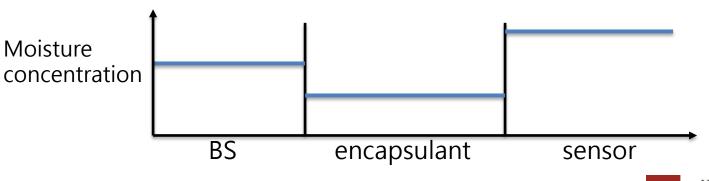
University of Ljubljana Faculty of Electrical Engineering

 $\frac{C_{enc}}{=}$ = $\frac{S_{enc}}{=}$

 C_{BS} S_{BS}

 $\vec{j}_{enc} = \vec{j}_{BS}$

Moisture diffusion



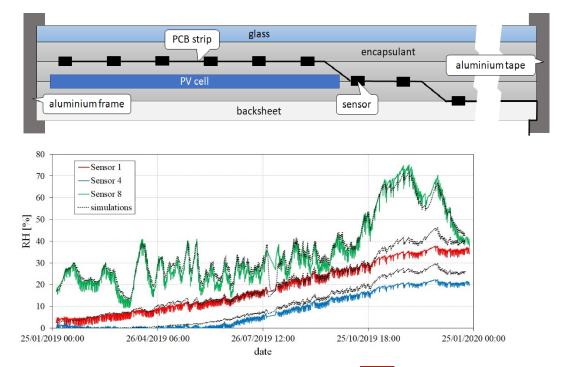
Simulating flow across material interfaces

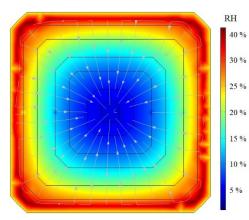
• Boundary conditions on material interfaces

(equilibrium state on boundary)

(flow into equals flow out of the boundary)

16





Moisture diffusion

Outdoor measurements

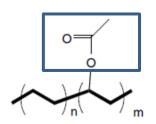
Mitterhofer et al, accepted for visual presentation at *EUPVSEC* 2020

S. Mitterhofer

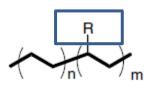
University of Ljubljana Faculty of Electrical Engineering

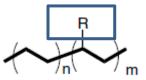
Climate

Materials



- Climate Modules Systems
- "Understanding climate related operation conditions of PV systems"
 - J. A-V: Main climate degradation factors
 - N.K.: Equilibrium moisture content in PV polymers
 - S.M.: Moisture diffusion in different encapsulants and backsheets
- "Advanced characterization of PV materials: natural and artificial ageing"
 - C.B.: DH/UV of different encapsulants
 - L.C.: Accelerating testing of backsheets
 - Dj.M.: Effect of different backsheet on encapsulant degradation
- "Understanding PV module performance evolution, Service Lifetime Prediction & O&M activities "
 - I.K.: PV degradation modelling
 - S.L.: Nonlinear Multi-step Performance Loss Rate
 - N.H.: Electrical parameter evolution
 - G.O.: Modelling applied to O&M activities





solar train

Artificial ageing of encapsulants Exposure to DH and UV

Ethylene Vinyl Acetate (EVA)

- Chemically crosslinked
- Low melting temperature (~70 °C)
- Formation of acetic acid

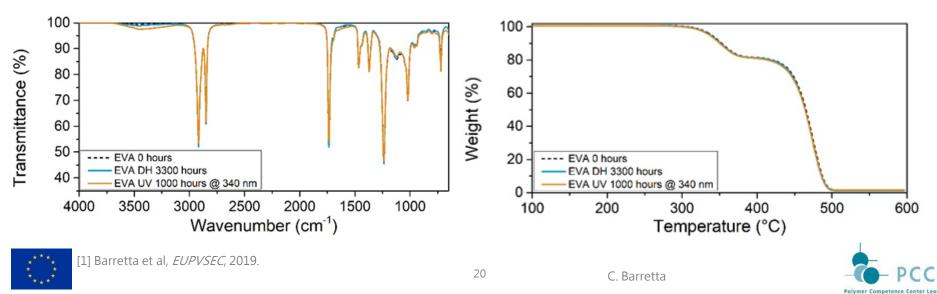
Polyolefin Elastomer (POE)

- Chemically crosslinked
- Low melting temperature (65°C-70°C)
- No formation of acetic acid

Thermoplastic Polyolefin (TPO)

- Physically crosslinked
- High melting temperature (~110°C)
- No formation of acetic acid

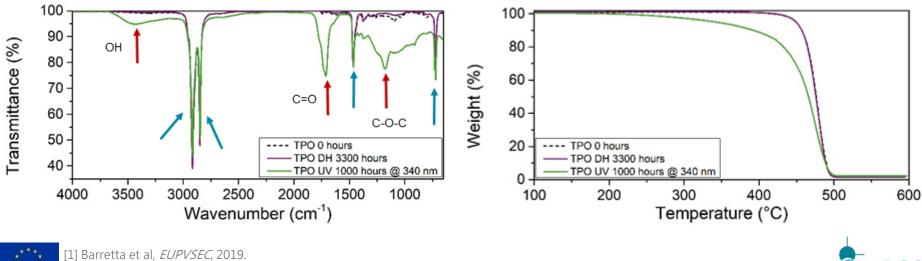
C. Barretta



Artificial ageing of encapsulants

Exposure to DH and UV: TPO

	Additive	0 hours	DH 3300 hours	UV 1000 hours
	Antioxidant (BHT)	\checkmark	\checkmark	\checkmark
EVA	UV absorber (Octabenzone)	\checkmark	\checkmark	\checkmark
	UV absorber (Benzotriazol)		\checkmark	



Polymer Competence (

Artificial ageing of encapsulants

Exposure to DH and UV: TPO

21

PP

FP-

PET

Accelerated testing of backsheets

Exposure to DH and UV

Polypropylene Polypropylene Polypropylene
Fluoropolymer PET PET
Polyamide

PA- Polyamide ALU PET Polyamide PP

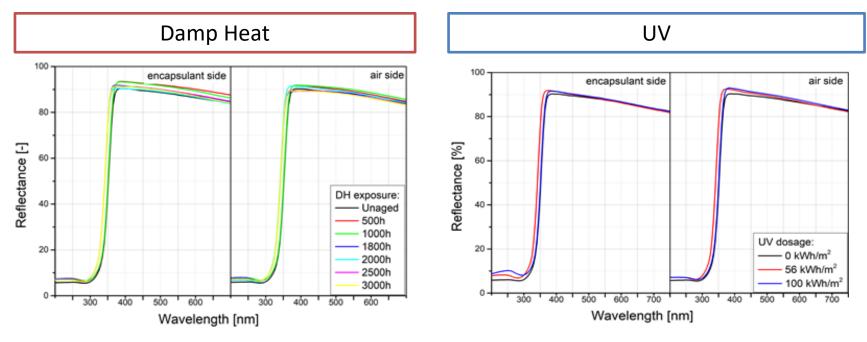
- Coextruded
- Max reflectance of 90%

FP-PET

- Multilayer, PET core
- Max reflectance of 95%

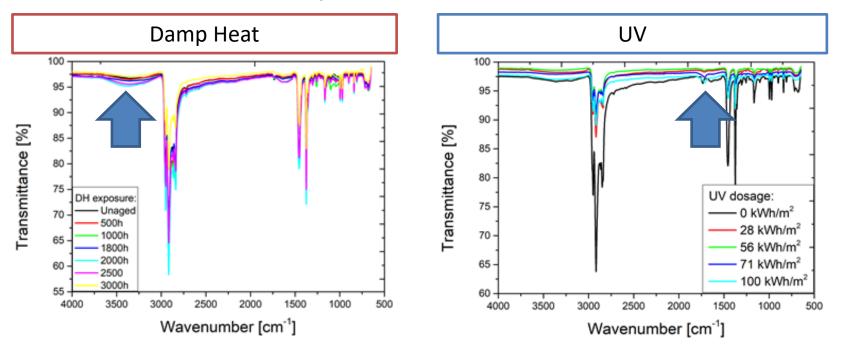
PA-ALU

- Multilayer, PET core
- Black frontside


Materials

Accelerated testing of backsheets

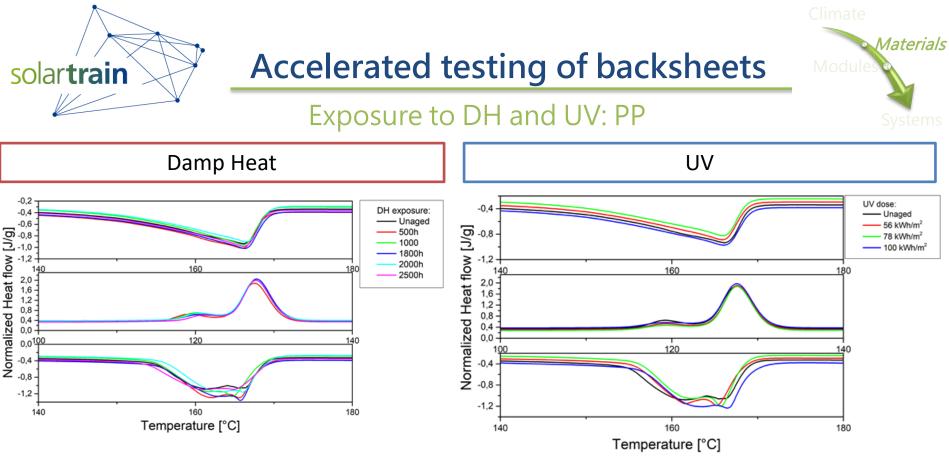
Exposure to DH and UV: PP


Materials

L. Castillon

Accelerated testing of backsheets

Exposure to DH and UV: PP



Materials

L. Castillon

No signs of polymer degradation

L. Castillon

Accelerated testing of backsheets

Summary

• PP Backsheet

solar train

- Most optical stable backsheet during accelerated weathering
- Surface modification with apparition of the hydroxyl and carbonyl groups
- No polymer degradation observed
- No embrittlement of backsheets

- PET based backsheet
 - Changes in the optical properties signaling yellowing
 - Signs of hydrolysis of the PET (outer) layer, but not for the PA (outer) layers.
 - Changes in the crystalline region showing signs of lamella thickening and chain scission
 - Embrittlement of backsheets

L. Castillon

Materials

26

Effect of backsheet type on encapsulant

DSC analysis

Different backsheets

PET- based Backsheet_1

PET- based Backsheet_2

PA- based Backsheet

Same encapsulant

EVA

Different material combinations lead to different EVA degradation rate

The decrease of the melting enthalpy is a good indicator for material/polymers degradation [1]

D. Mansour

Materials

Effect of backsheet type on encapsulant

FTIR spectroscopy

PA- based Backsheet

PET- based Backsheet_2

Materials

- Both PET-based backsheets:
 - More degradation products are detected: di and tri-alkyl substances
- Pa-based backsheet:
 - Thermal-oxidation after DH
 - Photo-oxidation after UV-DH
- Glass/EVA interface [2]:
 - The glass seems to act as a catalyst for EVA chemical changes of DH

Different material combinations lead to different EVA degradation Mechanisms

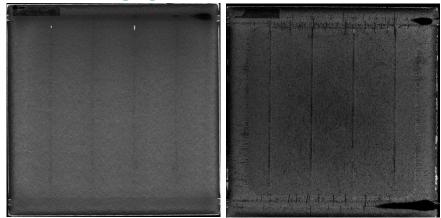
Effect of backsheet type on encapsulant

Scanning Acoustic Microscopy imaging

PA- based Backsheet

- Multiple characterizations:
 - Degradation under combined UV-DH is higher than both individual stresses
 - Moisture plays a synergistic role with UV in the formation of surface BS cracking [3]
- SAM imaging:
 - Non-destructive method for BS interlayer cracking quantification

Laboratory-produced backsheet cracking to simulate fielded-degraded backsheets

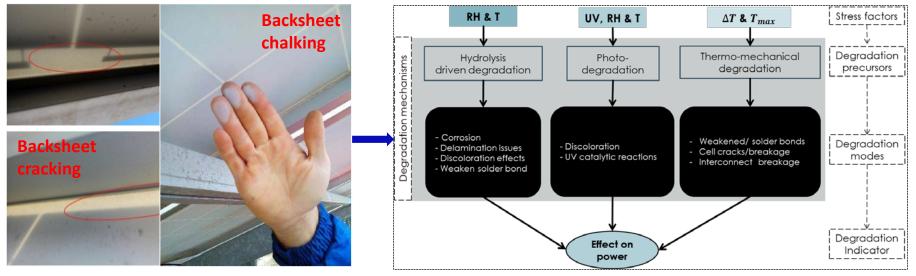

Before aging

Mansour et al, accepted for visual

presentation at EUPVSEC 2020

UV-DH 240 kWh/m²

Materials


29

PV material degradation to PV module modeling

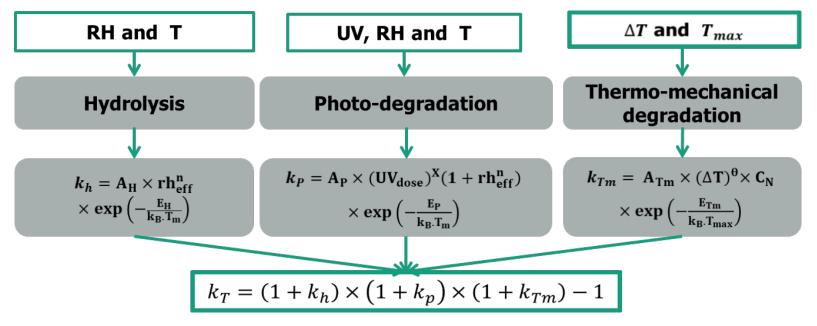
Quantitative, experimental understanding of the polymeric degradation mechanisms can then be used to better model PV module lifetimes

D. Mansour

PV System Performance: O&M

- "Understanding climate related operation conditions of PV systems"
 - J. A-V: Main climate degradation factors
 - N.K.: Equilibrium moisture content in PV polymers
 - S.M.: Moisture diffusion in different encapsulants and backsheets
- "Advanced characterization of PV materials: natural and artificial ageing"
 - C.B.: *DH/UV of different encapsulants*
 - L.C.: Accelerating testing of backsheets
 - Dj.M.: Effect of different backsheet on encapsulant degradation
- "Understanding PV module performance evolution, Service Lifetime Prediction & O&M activities "
 - I.K.: PV degradation modelling
 - S.L.: Nonlinear Multi-step Performance Loss Rate
 - N.H.: Electrical parameter evolution
 - G.O.: Modelling applied to O&M activities

solar**train**


Module

Svstems

PV module performance

Method: Climate based degradation model: Quantification of climatic stresses

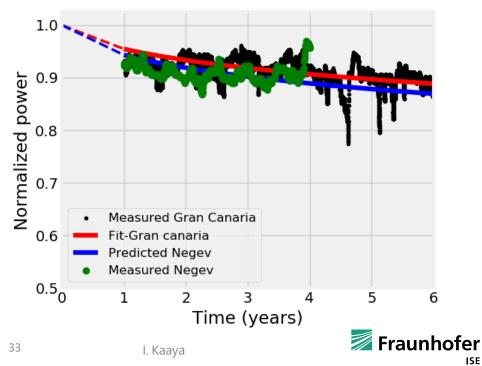
Modules

Systems

PV module performance

Experimental part, model calibration & validation

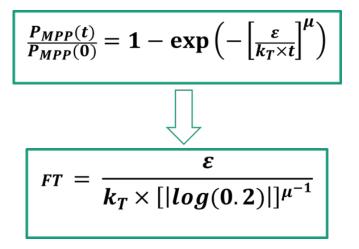
Outdoor exposure: 3 benchmarking climates



Calibration and validation

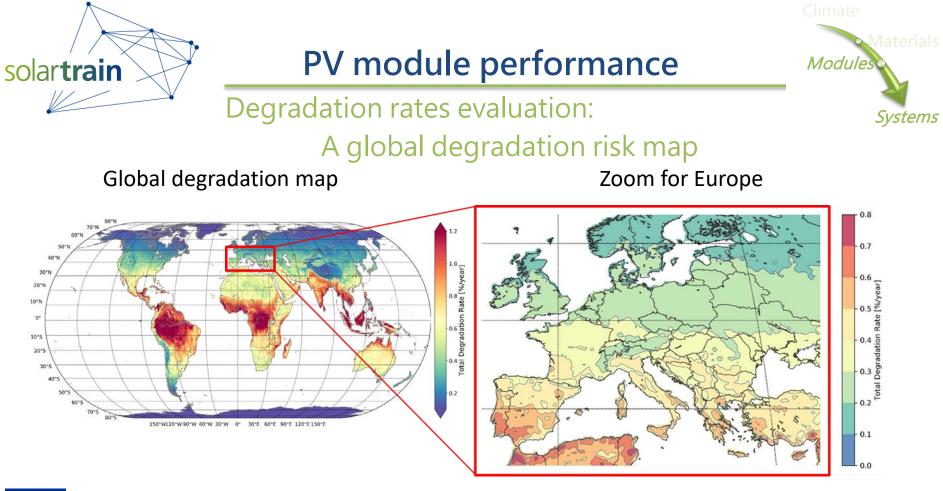
Module

Systems



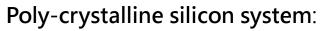
Degradation rates & lifetime evaluation

Failure time (FT) \rightarrow -20% of the initial power

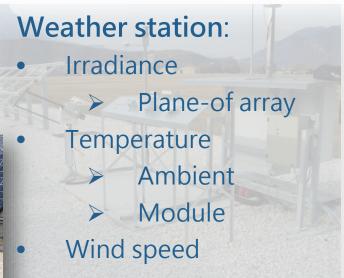

Values for the 3 locations

Location	k _T [%/year]	FT [years]
Gran Canaria	0.50	30.2
Negev	0.74	20.5
Zugsptize	0.30	50.7
		- I C

I. Kaaya


[2] Ascencio-Vasquez, Kaaya et al. *Energies,* 2019.

I. Kaaya



Example PV plant – Bolzano (IT)

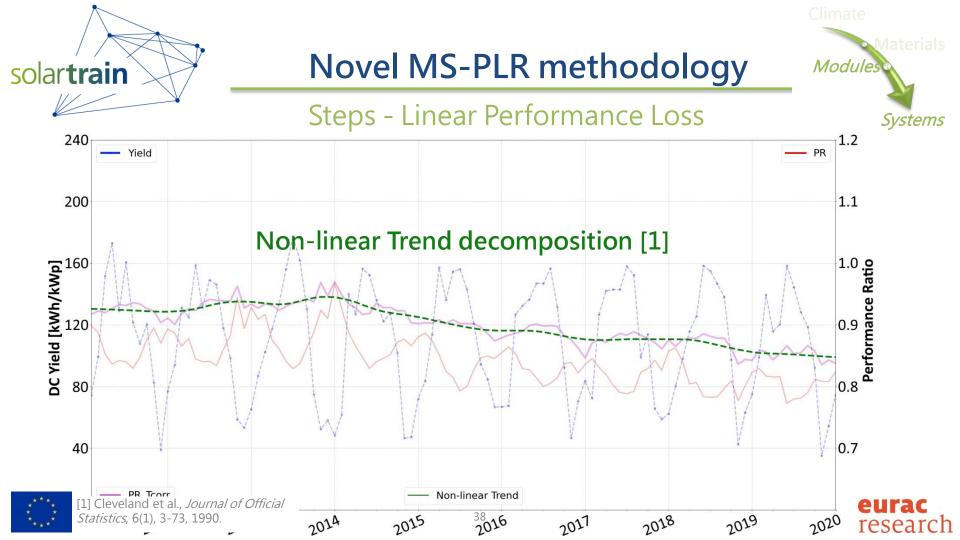
- Nominal power 4.2kWp
- In operation since 2010
- Parameter: DC power

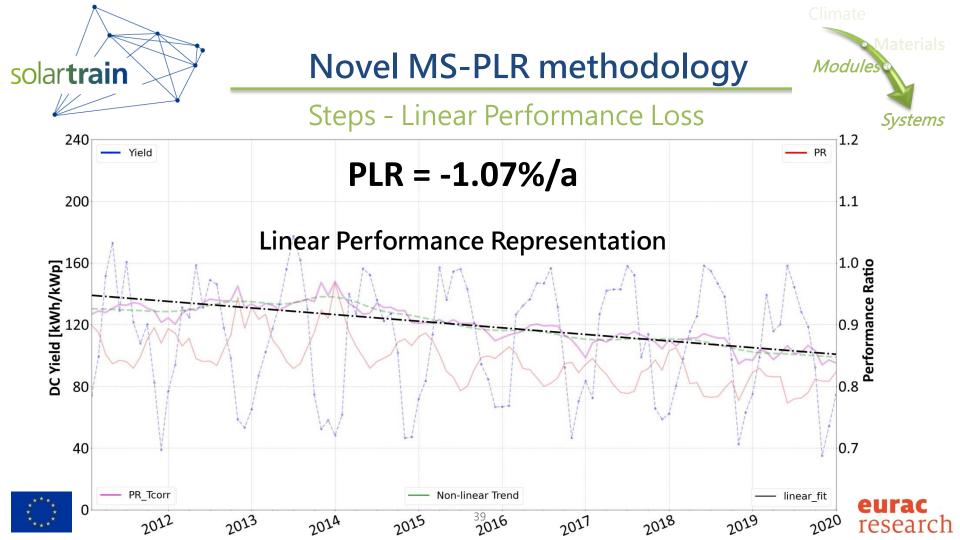
Module

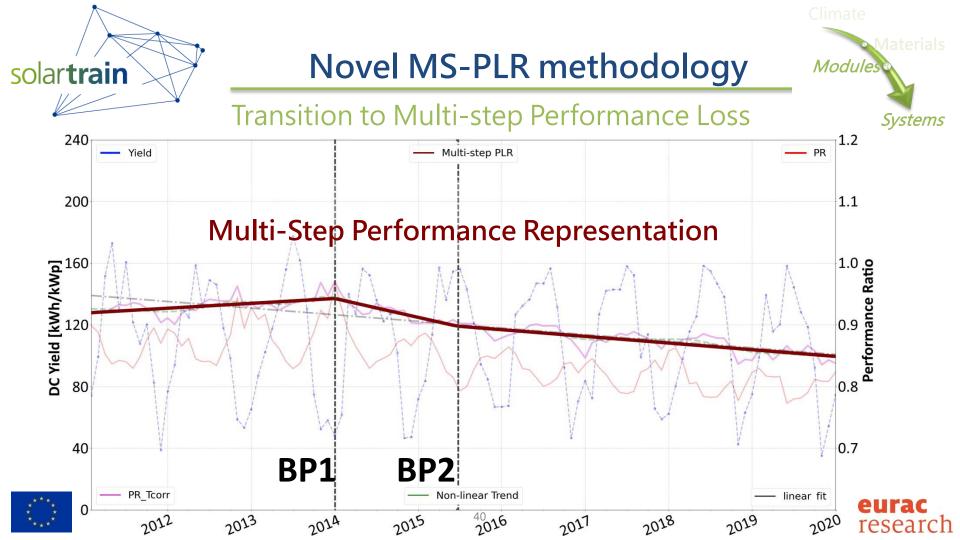
Systems

S. Lindig

Novel MS-PLR methodology




Performance Loss Rates:


- Purpose of Performance Loss Rates is to describe the performance evolution of PV systems
- Important for
 - Performance evaluation
 - Heath-status
 - Possible warranty claims
 - Everyday O&M activities

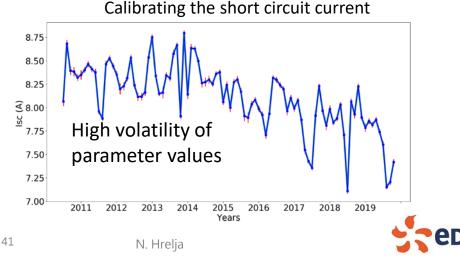
Electrical Parameter Evolution

Signatures of Degradation Mechanisms

Degradation of PV performance is usually determined with the decrease of power where the same magnitude of losses can have various causes.

Using the **physical performance model parameters** of PV could help identifying various degradation pathways and assess the time dependent health of the modules.

METHOD

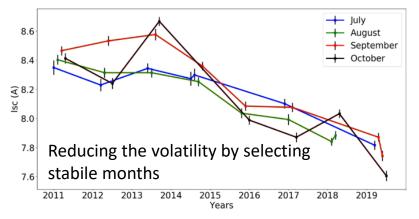


Searching for a set of parameter values θ such that the computer model $f(x, \theta)$ fits as closely as possible the field data R.

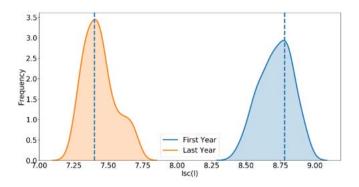
For the calibration, the Approximate Bayesian Computation (ABC) is used:

Robust to measurements noise

5 days of highest PV production selected in every month



Electrical Parameter Evolution



Results based on 8 years of data

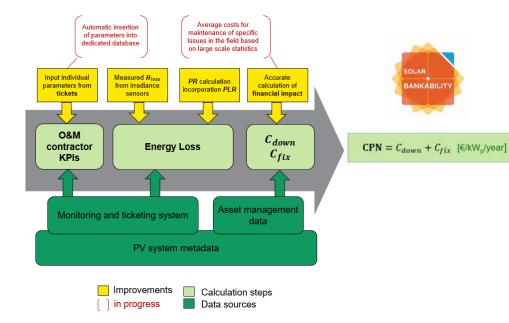
The degradation in power (Pmpp) is related to the degradation in short circuit current (Isc). Average decrease of Isc over 8 years period is 13%.

No detectable change in series resistance (Rs) and shunt resistance (Rsh) over the period of 8 years.

Possible causes:

- Discoloration of encapsulant
- Degradation of anti-reflective coating
- Glass corrosion
- Cracks?

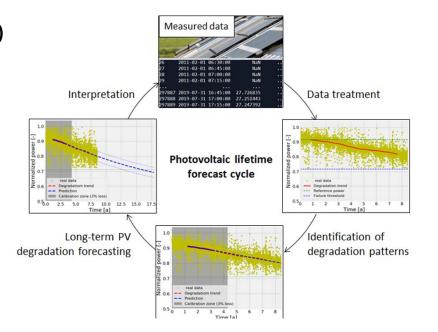
Modelling applied to O&M activities Modules


Putting the pieces together

First steps taken:

Optimization of the CPN methodology (methodology for the assessment of the economic impact of failures occurring during operation)

Status: approach based on measured monitoring data and *a posteriori* scenarios (*no lifetime predictions done... yet*)

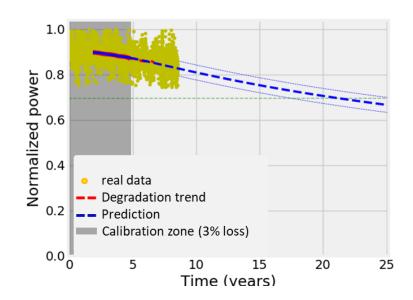


Putting the pieces together

The link: Data driven model for long-term forecast (RUL)

New modelling approach proposed

- Reliable for PV system level applications
- Improves long-term degradation forecast from a short degradation history
- Applicable for any module technology
- Separates reversible degradation trends from non-reversible



Svstems

Modelling applied to O&M activities Modules

Putting the pieces together

Key challenges for the adoption of lifetime predictions in the O&M sector (work in progress and future steps):

Move away from linear (constant) degradation rates from datasheets

Partially achieved with the implementation of PLR -> Next step: application of more adaptive approaches (e.g. multi-step PLR)

- Data-driven approaches preferred to physical models Correlation of the degradation patterns with degradation modes -> data labelling with the support of field diagnostic techniques (IR, EL, IV-curves, etc.) Lower prediction uncertainty by using field knowledge -> constant re-calibration of the models
- Failure Time and Remaining Using Lifetime (RUL) of PV systems How would accurate RUL and FT predictions change the O&M paradigm? How to adapt O&M strategies accordingly taking also into account the financial models?
- The secondary market and hand-over procedures

Forecasting long-term behavior (20-30 years) based on few data points (2-5 years)

G Oviedo Hernández

Conclusions Key findings

"Understanding climate related operation conditions of PV systems"

- UV irradiance, moisture and thermal stress are the main PV degradation factors.
- Indoor and outdoor weather exposure helped us to identify and model PV degradation mechanisms.
- Henry type sorption and Fickian diffusion: simple, but can be inaccurate in some polymers
- Other models, e.g. Perrin and Favre sorption: more complex, but fit better

Conclusions Key findings

"Advanced characterization of PV materials: natural and artificial ageing"

- Understanding polymer degradation is a challenging task because many factors are involved (environmental stresses, microclimate conditions, etc.).
- Laminated but not encapsulated TPO showed most severe degradation compared to EVA.
- Appropriate selection of characterization methods helps in understanding degradation mechanisms.
- Current PV backsheets have a great resistance to degradation under accelerated ageing conditions
- Different material combinations (backsheet/encapsulant) lead to different degradation mechanisms.

"Understanding PV module performance evolution, Service Lifetime Prediction & O&M activities"

- Development of analytical models for climatic stresses sensitivity analysis of photovoltaic modules worldwide and a data-driven methodology for PV lifetime forecast using very limited degradation history
- Cross-comparison of commonly used linear Performance Loss Models in the field
- Development of multi-step performance loss algorithm for advanced performance monitoring"
- Electrical parameter evolution as signatures of degradation mechanism
- Optimization of the CPN methodology for O&M economic analysis

Thank you for your attention!

Visit us: <u>www.solar-train.eu</u>

This project has received funding from the European Union's Horizon 2020 programme under GA. No. 721452.

Publications

Journals

- Lindig, S.; Kaaya, I.; Weis, K.-A.; Moser, D.; Topič, M., *Review of Statistical and Analytical Degradation Models for Photovoltaic Modules and Systems as Well as Related Improvements.* IEEE Journal of Photovoltaics 2018, 1–14.
- Kaaya, I.; Koehl, M.; Mehilli, A.P.; de Cardona Mariano, S.; Weiss, K.A., *Modeling Outdoor Service Lifetime Prediction of PV Modules: Effects of Combined Climatic Stressors on PV Module Power Degradation*. IEEE J. Photovoltaics 2019, 9, 1105–1112
- Ascencio-Vásquez, J.; Brecl, K.; Topič, M., Methodology of Köppen-Geiger-Photovoltaic climate classification and implications to worldwide mapping of PV system performance. Solar Energy 2019, 191, 672–685.
- Ascencio-Vásquez, J.; Kaaya, I.; Brecl, K.; Weiss, K.A.; Topič, M., Global Climate Data Processing and Mapping of Degradation Mechanisms and Degradation Rates of PV Modules. Energies 2019, 12, 4749.
- Mitterhofer, S.; Glažar, B.; Jankovec, M.; Topič, M., *The development of thermal coefficients of photovoltaic devices*, Informacije MIDEM 2019, 49.4, 219–227.
- Ascencio-Vásquez, J.; Bevc, J. Reba, K.; Jankovec, M.; Topič, M., Advanced PV Performance Modelling Based on Different Levels of Irradiance Data. Energies 2020, 13, 2166.
- Mitterhofer, S.; Barretta, C.; Castillon-Gandara, L.F.; Oreski, G.; Topič, M.; Jankovec, M.; A dual-transport model of moisture diffusion in PV encapsulants for finite-element simulations. IEEE Journal of Photovoltaics 2020, 10.1, 94–102.

Publications

Conferences

- Ascencio-Vásquez, J., Topič, M., "An Overall Data Analysis Methodology for PV Energy Systems" 53rd MIDEM, Ljubljana, 2017.
- Mitterhofer, S., Jankovec, M., Topič, M., "A setup for in-situ measurements of potential and UV induced degradation of PV modules inside a climatic chamber," *53rd MIDEM*, Ljubljana, 2017.
- Kyranaki, N., Zhu, J., Gottschalg, R., Betts, T. R., "The Impact of Acetic Acid Corrosion on the Front-side Contacts and the Finger Electrodes of c-Si PV Cells," pp. 1–4, 14th Photovoltaic Science, Applications and Technology Conference (PVSAT-14), 2018.
- Kyranaki, N., Zhu, J., Gottschalg, R., Betts, T. R., "Investigating the Degradation of Front and Rear Sides of c-Si cells Exposed to Acetic Acid," pp. 1372–1375, 35th EU PVSEC conference, Brussels, 2018.
- Barretta, C., Oreski, G., Resch-Fauster, K., Pinter, G., "Development of non-destructive methods for acetic acid detection in photovoltaic modules," *35th EU PVSEC conference*, Brussels, 2018.
- Mansour, D. E., Swientek, F., Kaaya, I., Philipp, D., Pitta Bauermann, L., "Nanoindentation analysis of PV module polymeric components after accelerated aging," *35th EU PVSEC conference*, Brussels, 2018.
- Castillon, L. Oreski, G. "Analysis and developement of transport phenomena models for PV modules", 35th EU PVSEC conference, Brussels, 2018.
- Lindig, S.; Ingenhoven, P., Belluardo, G., Moser, D., Topič, M., "Evaluation of Technology-Dependent MPP Current and Voltage Degradation in a Temperate Climate," *35th EU PVSEC conference*, Brussels, 2018.
- Ascencio-Vásquez, J., Brecl, K., Topič, M., "Köppen-Geiger-Photovoltaic climate classification", *IEEE 7th World Conference on Photovoltaic Energy Conversion*, Hawaii, 2018.
- Mitterhofer, S., Jankovec, M., Topič, M., "Using UV LEDs for PV module aging and degradation study," *35th EU PVSEC conference*, Brussels, 2018.

Publications

Conferences

- Ascencio-Vásquez, J., Brecl, K., Smole, F., Topič, M., "Application of the full thermal model for PV devices", 555th MIDEM, Bled, 2019.
- Mitterhofer, S., Barretta, C., Castillon-Gandara, L.F., Oreski, G., Topič, M., Jankovec, M., "Analysis of ethylene vinyl acetate degradation under UV-A LED light", *55th MIDEM*, Bled, 2019.
- Kyranaki, N., Jankovec, M., Topic, M., Gottschalg, R., Betts, T. R., "Investigation of Moisture Ingress and Egress in Polymer Glass Laminates for PV Encapsulation," pp. 1–4, 15th Photovoltaic Science, Applications and Technology Conference (PVSAT-15), 2019.
- Lindig, S., Moser, D., Curran, A. J., French, R. H., "Performance Loss Rates of PV systems of Task 13 database," *IEEE PVSC Conference*, Chicago, 2019.
- Lindig, S., "Do we really know how to calculate Performance Loss Rates?," Intersolar, Munich, 2019.
- Barretta C., Oreski G., Resch-Fauster K., "Additive analysis in encapsulant materials and correlation to encapsulant degradation modes," 36th EU PVSEC conference, Marseille, 2019.
- Oviedo Hernandez, G., Lindig, S., Moser, D., Chiantore, P.V., "Optimization of the Cost Priority Number (CPN) Methodology to the Needs of a Large O&M Operator," pp. 1613 1617, 36th EU PVSEC conference, Marseille, 2019.
- Kyranaki, N., Whalley, D., Hutt, D., Gottschalg, R., Betts, T. R., "Direct measurement of moisture ingress in PV laminates," pp. 1045–1049, 36th EU PVSEC conference, Marseille, 2019.
- Castillon, L., Ascencio-Vásquez, J., Mehilli, A.P., Oreski, G., Topič, M., Weiß. K-A., "Parallel natural weathering of laminated backsheets across Europe", *36th EU PVSEC conference*, Marseille, 2019.
- Mitterhofer, S., Barretta, C., Castillon-Gandara, L.F., Oreski, G., Topič, M., Jankovec, M., "Dual sorption modelling of water ingress in PV encapsulants using a heterogeneous mesh in finite element simulations", *36th EU PVSEC conference*, Marseille, 2019.
- Lindig, S., "Theory & Practice of Performance Loss Rate Calculations," 13th PV Performance Modeling and Monitoring Workshop, Shanghai, 2019.

