

Impact of UV absorber encapsulants on the degradation of SHJ cells and modules

Nicolas PINOCHET, Romain COUDERC and Sandrine THERIAS

13th SOPHIA PV-Module Reliability Workshop, 20.04.2023

Solar resource map from Solar GIS

EDF PV plant in Atacama desert

UV light is detrimental to most PV modules

- Cell UVID
- Encapsulant degradation
- Delamination
- Backsheet yellowing and cracking
- ...

Spectral definition of UVA and UVB

8

500 nm

SOPHIA RELIABILITY

20/04/2023

600 nm

[1] N.G. Jablonski et al., Human skin pigmentation as an adaptation to UV radiation, PNAS, 2010.

atmosphere

lea

UV ageing of Silicon HeteroJunction (SHJ)

(a) Indoor and (b) outdoor IV measurements for a system of 5 SHJ modules aged 10 years outdoor [2]

IV parameters of differents cells (SHJ, IBC, n-PERT and p-PERC) after 2000 h of UV [3]

SOPHIA RELIABILITY

[2] Jordan et al., SHJ system field performance, IEEE JPV, 2018.

[3] Sinha et al., UV induced degradation of high-efficiency silicon PV modules with different cell architectures, PIP, 2022.

20/04/2023

Outline

1	Degradation of SHJ mini-modules in a UV chamber
2	Origin of the yellowing
3	Outdoor ageing of SHJ mini-modules
4	Conclusion

Mini-modules production

Encapsulant	P _{max} (W)	I _{sc} (A)	V _{oc} (V)	FF (%)
EVA	5.10 ± 0.01	9.38 ± 0.01	0.736 ± 0.001	73.9 ± 0.2
ΤΡΟΑ	5.16 ± 0.01	9.43 ± 0.01	0.738 ± 0.001	74.2 ± 0.1
EVA-UV	5.04 ± 0.03	9.29 ± 0.05	0.736 ± 0.002	73.7 ± 0.2
TPOA-UV	5.07 ± 0.01	9.23 ± 0.01	0.737 ± 0.001	74.5 ± 0.3
TPOB-UV	5.12 ± 0.01	9.34 ± 0.01	0.737 ± 0.001	74.3 ± 0.1

5 × 2 glass-glass mini-modules

Accelerated UV ageing

Yellowing of the modules

Front side of the mini-modules after 4200 h

Mini-modules relative losses during UV accelerated ageing

SOPHIA RELIABILITY

20/04/2023

Different losses of SHJ under UV

Mini-modules performances during UV accelerated ageing

Acceleration of the yellowing

Strong yellowing may happen in high irradiance environments

SOPHIA RELIABILITY

[4] Liu et al., UV degradation behavior of polymeric backsheets for PV modules *Solar Energy*, 2014.[5] Miller et al., Degradation in PV encapsulant transmittance: esults of the first PVQAT TG5 artificaial weathering study, PIP, 2018.

20/04/2023

Early detection of yellowing

Front side of the mini-modules after 4200 h

Comparaison of yellowing patterns and PL

Early detection of yellowing

Front side of the mini-modules after 4200 h

Chromophors involved in yellowing emit under 532 nm excitation

Early detection possible with 532 nm PL imaging

Encapsulant Back, 0 h Back, 4200 h Front, 0 h Front, 4200 h EVA 5 cm PL images in the center of the mini-modules TPOA EVA-UV TPOA-UV **TPOB-UV**

SOPHIA RELIABILITY

20/04/2023

Chromophors in 3D

Front and rear PL images of an aged TPOB-UV mini-module

Photobleaching caused by oxygen diffusion

Yellowing limited to the front

SOPHIA RELIABILITY cea

20/04/2023

UV ageing of thin films samples

Samples sealed in glass capsules in UV chamber

Absorbance of TPOB-UV after 0, 1550 and 2550 h of UV ageing

Yellowing only visible for glass sealed samples

Chromophores created under UV and without oxygen: photolytic mechanism

20/04/2023

Spectral impact on the yellowing

Visual inspection UV ageing under UV LEDs

PL images of modules TPOB-UV centre (increased integration time)

UVA and UVB generate chromophores

N. Pinochet, R. Couderc, S. Therias. Solar cell UV-induced degradation or module discolouration: between the devil and the deep-yellow sea. Progress in Photovoltaics: Research and Applications

Q

Outdoor ageing

Outdoor aged SHJ mini-modules with EVA (left) and EVA-UV (right)

20/04/2023

Conclusions

EVA mini-module aged outdoor

532 nm PL images

Cea SOPHIA RELIABILITY

Mini-modules initial performances

		(/
EVA 5.10 ± 0.01 9.38 ± 0.0	01 0.736 ± 0.001	73.9 ± 0.2
TPOA 5.16 ± 0.01 9.43 ± 0.0	01 0.738 ± 0.001	74.2 ± 0.1
EVA-UV 5.04 ± 0.03 9.29 ± 0.0	0.736 ± 0.002	73.7 ± 0.2
TPOA-UV 5.07 ± 0.01 9.23 ± 0.0	01 0.737 ± 0.001	74.5 ± 0.3
TPOB-UV 5.12 ± 0.01 9.34 ± 0.0	01 0.737 ± 0.001	74.3 ± 0.1

Thank you for your attention

EVA-UV mini-module aged in UV chamber

On the behalf of the SMSP team from the DTS

SOPHIA RELIABILITY

20/04/2023