

## PV sustainability and circular model in the PV value chain **PHOTORAMA** – A circular model from concept to field experience

PHOTORAMA - Photography process from the Lumières brothers -Panoramic view enabling the full reproduction of the horizon



## **Claire AGRAFFEIL**

Organization : CEA









# PHOtovoltaic waste management – advanced Technologies for recOvery & recycling of secondary RAw MAterials from end-of-life modules

#### H2020 project (May 2021 - April 2024)

 Budget
 : 10,365,764.75 €

 EC Contribution
 : 8,381,666.38 €

- 13 partners
- 8 work packages and 5 key objectives
- Set up of a full management Pilot Line



#### A circular economy across the photovoltaic value chain

"develop innovation leading to successful and competitive solutions to launch sustainable markets for secondary RM in Europe."





















\*\* Source : IRENA Report – "Future of solar photovoltaic", 2019







## What is it? **SUSTAINABILITY**

Sustainability vs "long term" focuses on meeting the needs of the present without compromising the ability of future generations to meet their

needs. Sustainability concept made up of three pillars:

- Economic (profits) •••
- Environmental (planet) •
- Social (people) •

| 1 de pauvrete<br><b>Ř: Ř: Ř: Ř</b>             | 2 TAN<br>TERT                                  | 3 BONNESANTE<br>                          | 4 EDUCATION<br>DE QUALITE                     | 5 EBALITE ENTRE                      | 6 EAU PROPRE ET<br>ASSA DIVISSEMENT              |
|------------------------------------------------|------------------------------------------------|-------------------------------------------|-----------------------------------------------|--------------------------------------|--------------------------------------------------|
| 7 ENERGIE PROPRE<br>ET UTUN COUT<br>ABORGABLE  | 8 TRAVAL DÉCENT<br>ET CROISSANCE<br>ECONOMIQUE | 9 EDISTREE INVOLUTION<br>ETIMERASTRUCTURE | 10 récurts                                    |                                      | 12 CONSOMMATION<br>EL PRODUCTION<br>RESPONSABLES |
| 13 ACTEIN CONTRELE<br>CHANGEMENT<br>CLIMATIQUE | 14 VIE<br>Aquatiene                            |                                           | 16 PMX JUSTICE<br>ET INSTITUTIONS<br>EFROACES | 17 PARTENAMATS<br>DURIES<br>DEJECTES | SUSTAINABLE<br>DEVELOPMENT<br>GOALS              |

Source: United Nations



Restorative economy where all the actors in the value chain are dependent on each other to close the loop. <u>Circular Economy</u> concept made up of three pillars:

- Natural capital design
- Resource circularity •
- Systemic efficiency eliminating externalities •













Source: Ellen MacArthur Foundation











\* ISO 14006 provides guidelines to assist organizations in establishing, documenting, implementing, maintaining and continually improving their management of ecodesign as part of an environmental management system (EMS).



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958223.



#### **ISO 14006:2011** (revised by ISO 14006:2020)\* "A systematic approach <u>that considers the</u> <u>environmental aspects</u> of the design and development process in <u>order to reduce negative environmental</u>

impacts throughout the life cycle of a product"

- Raw materials acquisition
- Design and development
- Manufacturing
- Delivery and installation
- Utilization (including reuse, maintenance, repair,
- reconditioning, refurbishment and modernization)
- End-of-life treatment
- Disposal

## Directive 2009/125/EC (under revision 2020)

Article 2.23 - "Ecodesign means the <u>integration of</u> <u>environmental aspects</u> into product design with the <u>aim of improving the environmental performances</u> of the product **throughout the its whole life cycle**" \* Introduction Section 17 " eco-design requirement should be established on the basis of technical, economic and environmental analysis."

Conceptual design
 Specific and explicit design
 Realization
 Entering the market



## PHOTORAMA









- Training, workshop & conference
- Awareness campaign



## PHOTORAMA



- Data quality over the life cycle
- Fulfilment of the 3 objectives
- Modelling matrix (tech./eco./env.)
- Compliance to conformity within the scope







This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958223.



Main targets that to be considered: -Design for life cycle EP -Design for recycling -Design for health & safety

> Critical points to be addressed: - Energy efficiency - Materials (hazardous, depletion) - End-of-Life management









Design for SUSTAINABILITY



### PHOTORAMA



(\*) https://www.cencenelec.eu/media/CEN-CENELEC/AreasOfWork/CEN-CENELEC Topics/Environment%20and%20Sustainability/Quicklinks%20General/Documentation%20and%20Materials/weee-brochure.pdf



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958223.



#### (D) 2012/19/EU





PV waste?

#### WEEE 2012/19/UE (transposition 2014 member states) $\rightarrow$ Category 4 – PV equipment



#### Which kind of WEEE ?

 $\rightarrow$  Crystalline Silicon-based ~ 95% of the market  $\rightarrow$  1.6 to 2 m<sup>2</sup> including 4-5 metals (+traces)

(+ Thin films (CdTe, CI(G)S) ~ 5 % of the market amongst emerging technologies) \*Compared to a smartphone  $\rightarrow$  ~0.00005 m<sup>2</sup> including up to 50 metals

How much compared to WEEE stream ?

 $\rightarrow$  PV waste could exceed 10% of WEEE stream globally by 2050

> What's to be recovered ??

\* Considering the world's population of 2017 assessed by the United Nations and an average power module at 300Wp



























Step 1



#### **MATERIALS RECOVERY**





#### **Disassembly of external components**

Full-automation panels handling @1200tons/y

- Removal of junction box ( $\rightarrow$  recovery others WEEE)
- Removal of Al frame (→ metal refinery)
   Without breaking the devices

#### **Diamond wire cutting process**

Mechanical delamination cutting through

- Intact glass sheet (recycling or re-use)
- Cells residues (for step 3)
- Polymer backsheet (energy fuel)

#### **Super critical fluid process**

Mechanical delamination by EVA foaming

- Intact glass sheet (recycling or re-use)
- Cells residues (for step 3)
- Polymer backsheet (energy fuel)

#### **Optical process**

Optical delamination by EVA damaging

- Intact glass sheets (recycling or re-use)
- Cells printed on glass sheet (for step 3)

#### **IL leaching & electrolysis**

Metals recovery - *Ag* (>99%), *Si* (*MG*) **OSA & electrolysis** Metals recovery

- In (99%), Ga (99%)





























TRL 7 by the end Pilot Line demo For 1200 tons a year





Claire AGRAFFEIL | Project coordinator | claire.agraffeil@cea.fr





This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958223.



# Thanks for your attention !