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2030 EU PV goals

EU plans deploying between 140 and 222 GW of new PV power plants by 2030
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2030 EU PV goals: concerns
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Europe has already the highest
number of renewable systems
installed in protected areas.

Rehbein, J. A. et al. Glob. Chang. Biol. 26, 3040-3051 (2020)
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2030 EU PV goals: concerns
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Renewables in Spain threaten biodiversity
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Letter from Spanish researchers to Science:
Spain should adopt a more cautious approach to prevent a scenario in which energy
goals are met at the expense of biodiversity. [...]
Photovoltaic energy needs huge amounts of land and will mostly affect declining species

of steppe birds, which are poorly represented in the Spanish Natura 2000 network.

Serrano, D. et al. Renewables in Spain threaten biodiversity. Science (80-. ). 370, 1182-1183 (2020). 80iling Live Polnatin o
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2030 EU PV goals: concerns

ENERGIAS RENOVABLES =

Los agricultores se frotan las manos ‘plantando’
paneles solares

Los precios de alquiler de suelo rustico para un parque fotovoltaico llegan a 1.500
euros por hectdrea y ano, frente a los 150 para cultivar cereal

EL PAIS

RENEWABLE ENERGY =

Farmers rub their hands 'planting’ solar panels

Rural land rental prices for a photovoltaic park reach 1,500 euros per hectare per
year, compared to 150 to grow cereal

Aparicio, L. Los agricultores se frotan las manos ‘plantando’ paneles solares. El Pais (2020). SOilingPIl-]ivte satli;mptionfor
otoVoltaics



Floating PV: Definition

PV is installed on the surface of water
bodies instead of land.
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Pro/cons

The cost for renting land for PV is increasing. =» Lower rent installing on water!

Use of existing electricity transmission infrastructure at hydropower sites. = Lower
costs for infrastructures!

Expected to work at lower temperature thanks to the cooling effects of water. =
Better performance!

No need for major site preparation, such as leveling or the laying of foundations.
Easy installation and deployment. = Lower installation costs!

However, FPV modules have to be installed at lower tilt angles ("10° ). = Worse
performance!

Saldﬁv

World Bank Group, ESMAP, and SERIS, “Where Sun Meets Water: Floating Solar Market Report—Executive Summary,” Washington, DC, 2018. Sollmspll-]lvs satﬂac;wnf



Floating PV: Capacity
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By August 2020, FPV had reached a global 2.6 GW

capacity, distributed over 35 countries. z 105 ]

This is twice the capacity reported at the end of %

2018. .

It is expected to double by the end of 2022. A E

forecast predict 13 GW by 2025. G 107 -
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Deloitte, “Technology, Media, and Telecommunications Predictions 2020,” 2022.
F. Haugwitz, “Floating solar PV gains global momentum,” PV Magazine International, pp. 1-10, Sep. 22, 2020. Sollmgpll-]ltsatlz;mau n for
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Floating PV: Capacity
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World Bank Group, ESMAP, and SERIS, “Where Sun Meets Water: Floating Solar Market Report—Executive Summary,” Washington, DC, 2018.
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Research Questions
1) Which is the Floating PV potential in Europe?

Economics?

Lower Tilt Angle

2) Which Capital Expenditure (CAPEX) can be sustained by FPV
systems to be economically competitive with in-land PV (LPV)?

LCOEgpy (CAPEXgpy) < LCOE, py (CAPEX; py)

Micheli, L. Sol. Energy 227, 625-634 (2021)
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Research Questions
1) Which is the Floating PV potential in Europe?

Economics?

Lower Tilt Angle
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Methodology

We considered the reservoirs listed in the Global Reservoir and Dam Database
(GRanD) v1.3:

* |t contains a large number of information on each dam;

* However, it might report only part of the total number of dams
=» conservative estimation of the FPV surface available.

Same filters as in Spencer et al., 2019:

®  toremove duplicate reservoirs

® toreflect current industry trends (1ha surface and 2m depth minimum) |

® toremove reservoirs with potentially conflicting main purposes _ SoledPV -

Spencer, R. S. et al. Environ. Sci. Technol. 53, 1680-1689 (2019)

Lehner, B. et al. Frontiers in Ecology and the Environment 9, 494-502 (2011) SOl.lmngeEamnauonfor
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Methodology

Monofacial Si modules, efficiency: 21.4%

Tilt: 10° and 20° (not in contact with water), south facing.

SoletPV i;’

[1] World Bank Group, SERIS, and ESMAP, “Where Sun Meets Water: Floating Solar Handbook for Practitioners,” Washington, DC, 2019. doi: 10.1596/32804. \
[2] Silvério, N. M. et al. Energy Convers. Manag. 171, 339-349 (2018). Solllnshvemmuonfor
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Methodology

Monofacial Si modules, efficiency: 21.4%
Tilt: 10° and 20° (not in contact with water), south facing.

Distance between modules: 20% larger than module height.

12 Lsin(a) = soletpy

Micheli, L. Sol. Energy 227, 625-634 (2021) Reai At ety
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Potential PV Capacity

Conservative estimation: 22500 km? available.

Tilt: 20 degrees

T T T T T T T T T T T T T
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FPV Capacity [GW/%bus] FPV Capacity [GW/%ws]

Each percentage point of water surface covered with FPV: 40 GW at 10° or 36 GW at 20°

At least 9% of the surface available is made of salt-water (i.e., Lake lJssel in the
Netherlands), potentially exposing FPV to harsher conditions than fresh water. SoledpV

L. Micheli, D. L. Talavera, G. M. Tina, F. Almonacid, and E. F. Fernandez, Under Review ESURIAELRZltul by
PhotoVoltaics



Potential PV Capacity

A third of the continental water surface is
in EU member states: 13-12 GW/%,s.

= 6 to 9% of EU 2030 goals for PV.

“16 TWh/year/%,,s within the EU,
=>» 0.5%/%,,s of the current demand.
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Research Questions
1) Which is the Floating PV potential in Europe?

Economics?

Lower Tilt Angle

2) Which Capital Expenditure (CAPEX) can be sustained by FPV
systems to be economically competitive with in-land PV (LPV)?

LCOEwpy (CAPEXzpy) < LCOE; py (CAPEX, py) > soletev
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Research Questions

Economics?

Lower Tilt Angle

2) Which Capital Expenditure (CAPEX) can be sustained by FPV
systems to be economically competitive with in-land PV (LPV)?

LCOEwpy (CAPEXzpy) < LCOE; py (CAPEX, py) > soletev
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Methodology

v

PVSyst Model = PV Watts Model

Referenced
U-value

~ soledy

IRENA, “Renewable Power Generation Costs in 2020,” Abu Dhabi, 2021.
Micheli, L. Sol. Energy 227, 625-634 (2021) EXte-oyy Estimation for
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Methodology & Literature Review
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M. Dérenkdmper, A. Wahed, A. Kumar, M. de Jong, J. Kroon, and T. Reindl, Sol. Energy 219, 15 (2021). 7
T. Kjeldstad, D. Lindholm, E. Marstein, and J. Selj, Sol. Energy 218, 544 (2021). R
H. Liu, V. Krishna, J. Lun Leung, T. Reindl, and L. Zhao, Prog. Photovoltaics Res. Appl. 26, 957 (2018). Rt ity
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Methodology Referenced
economic LCOE

parameters

v

PVSyst Model = PV Watts Model

Referenced LCOE — Installation Costs + Y. Yearly 0&M Costs /Discount
U-value - Y. Yearly Energy Yield /Discount

Soletprv

IRENA, “Renewable Power Generation Costs in 2020,” Abu Dhabi, 2021.
Micheli, L. Sol. Energy 227, 625-634 (2021) EXUEHSREtul e
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Methodology

Avg. 2020 Capital Expenditure
(CAPEX) ~ 800 €/kW.

S Min (Germany) ~ 600 €/kW.
E— Max (Russia) ~ 1650 €/kW.
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Results: Yield

Scenario A Scenario B Scenario C Scenario D
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Better performance in Southern countries because of
(i) the higher Sun elevations and
(i) the higher temperatures.
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Results: Yield

Tilt Angle: 20°
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Results: CAPEX

Tilt Angle: 20°
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The different yields of FPV
and LPV lead to different
CAPEX allowances.

Moreover, countries with
higher LPV CAPEX penalize
systems that have limited
yields, allowing even lower
CAPEX.

L. Micheli, D. L. Talavera, G. M. Tina, F. Aimonacid, and E. F. Fernandez, Under Review [E&IEHENn il by
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Discussion: CAPEX reduction

installation: Reduction in
Racking and Mounting costs.

No foundation work needed, easy ’; \/éf//

If existing hydropower plant 6
infrastructures could be used: : = &3 !
Reduction in T — | | |
COStS. 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

CAPEX due to Mounting & Racking and Grid Connection Costs [%]

_ i v
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Discussion: CAPEX reduction

Scenario A Scenario B Scenario C Scenario D
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"Mounting & Racking" costs both "Mounting & Racking" and
"Grid Connection" costs

Lowering both costs would make FPV cost competitive also in all the
investigated countries in all the modelled scenarios.

L. Micheli, D. L. Talavera, G. M. Tina, F. Almonacid, and E. F. Fernandez, Under Review ESURIAELRZltul by
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Discussion: Assumption and limitations

e This work did not consider potential additional costs that FPV might
require, during installation (e.g., for submerged cables) or during operation
(e.g., increased O&M costs).

e Cost of renting land was not considered.

e The simulation considered a fixed system degradation rate (1%/year), equal
for LPV and FPV.

80iling Live Estimation for
PhotoVoltaics




Discussion: FPV degradation

54 | Others

The challenging environment on water can pose unforeseen risks on
FPV systems, especially over the long run. Due to the limited period
of monitoring, we cannot yet document the issues related to long-
term degradation of PV modules and system components. These are

some possible risks:

* Potential induced degradation of PV modules.

+» Corrosions of combiner boxes, inverters, and metal supporting

structures on water.

* Corrosion and biofouling of floating structures, including degrada-

tion of floats due to UV exposure.*®
* Material fatigue of joints between floating structures.
* Sinking floats.

e Solar cables submerging or touching water, leading to electrical
hazards and earth leakage.

» Failure of anchoring and mooring.

e Toxic element contamination of water bodies due to material

degradation.

H. Liu, V. Krishna, J. Lun Leung, T. Reindl, and L. Zhao, Prog. Photovoltaics Res. Appl. 26, 957 (2018). f/f

nearby rooftop reference system. One rooftop PV string exhibits a per-
formance loss in the range of —0.6 to —0.5%/year, while the other one is
at —1.1%/year. In general, the performance stability of the rooftop and
FPV installations in the testbed are similar over the first three-year
operation. This study presents, for the first time, a systematic and

Degradation analysis and the impacts on feasibility study of floating )
solar photovoltaic systems e

Anik Goswami ", Pradip Kumar Sadhu
Indian Institute of Technology (1SM), Dhanbad, Jharkhand, india

ARTICLE INFO ABSTRACT

Article history: The constant pursuit for emerging renewable power sources has led to the development of floating
Received 16 September 2020 solar photovoltaics (FSPV). FSPVs operate on water bodies and hence its performance is different from
Received in revised form 25 November 2020 the land-based counterparts. Degradation and aging of PV modules severely affects the reliability and

Accepted 28 December 2020

A e a1 the life of PV power plants. Owners and other beneficiaries are concerned about the actual degradation

of PV modules as it affects the financial outcome of the power plant. The performance analysis and the

Keywords: degradation of FSPV power plants over its lifetime is not well reported. This paper presents techno-
Floating PV economic feasibility and reliability study of FSPV power plant for long term power generation. To
Degradation determine the performance of the FSPV module, an experiment was conducted and data was collected
Performance for 17 months. Results showed that the average e ratio and the ion rate was
t:_[%:ycleanalysis 71.58% and 1.18% respectively for the FSPV module and 64.05% and 1.07% respectively for land-based

PV system. Feasibility study and performance analysis of a 5 MW FSPV power plant showed that
with degradation of 1.18%/year, the power plant will generate 86045 MWh of electricity annually.
Degradation also effects the financial parameters, the levelized cost of electricity (LCOE) is calculated
as 0.041 §/kWh which is 2.5% higher than the LCOE calculated with standard degradation. The FSPV
plant will also save 105000 kL of water per year by reducing evaporation and the total lifetime CO;
savings will be 183,493.24 tones.

©2020 Elsevier Ltd. All rights reserved.
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Discussion: the role of degradation

50 -

25 -

=25 1 In Spain, each additional 0.1%/year in
_50 4 degradation costs 7.5 €/kW of CAPEX

Difference in FPV CAPEX
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Discussion: CAPEX allowance to tackle degradation

The funds available are not the same in
all locations.

More allowances in:

e South: highest temperatures and
energy yields

* Northwest: low irradiance, minimal
difference between the most and
the less performing PV installations.

-7.55 =750 =745 =740 -735 -7.30 /
Decrease in CAPEX allowance per additional 0.1%/year degradation [€/kW/%] 50’!4” g

80iling Live Estimation for
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Discussion: CAPEX allowance to tackle degradation

. CAPEX [€/kW]

The allowance will change also
depending on the CAPEX value.

Difference in FPV CAPEX
compared to LPV [€/kW]

—100 - »

0.0 0.5 1.0 1.5 2.0
FPV Degradation Rate [%/year] \
(LPV Degradation Rate: 1%/year)

* SoletpV
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Conclusions

 FPV could contribute to the achievement of the 2030 EU targets.
 FPV could over-perform LPV in the southernmost countries.

« Potential CAPEX reductions can favour FPV deployment even in
conditions of lower yields.

» Operating temperature is key in FPV performance and economics.

> SoletPV
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Future works

 Model more configurations: e.g.,
« water-cooled modules,
* semi-submerged modules.

* Include new field data, as they become available.

 Consider additional economic metrics, such as Net Present Value, and

additional factors:
» electricity price
e evaporation savings

80iling Live Estimation for
PhotoVoltaics
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